A structural model of the Sgt2 protein and its interactions with chaperones and the Get4/Get5 complex.

نویسندگان

  • Justin W Chartron
  • Grecia M Gonzalez
  • William M Clemons
چکیده

The insertion of tail-anchored transmembrane (TA) proteins into the appropriate membrane is a post-translational event that requires stabilization of the transmembrane domain and targeting to the proper destination. Sgt2 is a heat-shock protein cognate (HSC) co-chaperone that preferentially binds endoplasmic reticulum-destined TA proteins and directs them to the GET pathway via Get4 and Get5. Here, we present the crystal structure from a fungal Sgt2 homolog of the tetratrico-repeat (TPR) domain and part of the linker that connects to the C-terminal domain. The linker extends into the two-carboxylate clamp of the TPR domain from a symmetry-related molecule mimicking the binding to HSCs. Based on this structure, we provide biochemical evidence that the Sgt2 TPR domain has the ability to directly bind multiple HSC family members. The structure allows us to propose features involved in this lower specificity relative to other TPR containing co-chaperones. We further show that a dimer of Sgt2 binds a single Get5 and use small angle x-ray scattering to characterize the domain arrangement of Sgt2 in solution. These results allow us to present a structural model of the Sgt2-Get4/Get5-HSC complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nuclear Import of UBL-Domain Protein Mdy2 Is Required for Heat-Induced Stress Response in Saccharomyces cerevisiae

Ubiquitin (Ub) and ubiquitin-like (UBL) proteins regulate a diverse array of cellular pathways through covalent as well as non-covalent interactions with target proteins. Yeast protein Mdy2 (Get5) and its human homolog GdX (Ubl4a) belong to the class of UBL proteins which do not form conjugates with other proteins. Mdy2 is required for cell survival under heat stress and for efficient mating. A...

متن کامل

Structure of the Sgt2/Get5 complex provides insights into GET-mediated targeting of tail-anchored membrane proteins.

Small, glutamine-rich, tetratricopeptide repeat protein 2 (Sgt2) is the first known port of call for many newly synthesized tail-anchored (TA) proteins released from the ribosome and destined for the GET (Guided Entry of TA proteins) pathway. This leads them to the residential membrane of the endoplasmic reticulum via an alternative to the cotranslational, signal recognition particle-dependent ...

متن کامل

Mechanism of Assembly of a Substrate Transfer Complex during Tail-anchored Protein Targeting.

Tail-anchored (TA) proteins, defined as having a single transmembrane helix at their C terminus, are post-translationally targeted to the endoplasmic reticulum membrane by the guided entry of TA proteins (GET) pathway. In yeast, the handover of TA substrates is mediated by the heterotetrameric Get4/Get5 complex (Get4/5), which tethers the co-chaperone Sgt2 to the targeting factor, the Get3 ATPa...

متن کامل

Structural characterization of the Get4/Get5 complex and its interaction with Get3.

The recently elucidated Get proteins are responsible for the targeted delivery of the majority of tail-anchored (TA) proteins to the endoplasmic reticulum. Get4 and Get5 have been identified in the early steps of the pathway mediating TA substrate delivery to the cytoplasmic targeting factor Get3. Here we report a crystal structure of Get4 and an N-terminal fragment of Get5 from Saccharomyces c...

متن کامل

Get 5 Carboxyl - terminal Domain Is a Novel Dimerization Motif

Background: The Get4/Get5 protein complex is a homodimer mediated by the Get5 carboxyl domain. Results: The Get5 homodimerization motif forms a structurally conserved helical domain allowing Get4/Get5 to adopt an extended solution conformation. Conclusion: Get5 homodimerization is mediated by a 35-residue sequence stabilized by a few conserved hydrophobic interactions. Significance: The Get5 ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 286 39  شماره 

صفحات  -

تاریخ انتشار 2011